Convolutional Neural Networks combined with Runge-Kutta Methods

نویسندگان

  • Mai Zhu
  • Chong Fu
چکیده

A convolutional neural network for image classification can be constructed following some mathematical ways since it models the ventral stream in visual cortex which is regarded as a multi-period dynamical system. In this paper, a new point of view is proposed for constructing network models as well as providing a direction to get inspiration or explanation for neural network. If each period in ventral stream was deemed to be a dynamical system with time as the independent variable, there should be a set of ordinary differential equations (ODEs) for this system. Runge-Kutta methods are common means to solve ODE. Thus, network model ought to be built using these methods. Moreover, convolutional networks could be employed to emulate the increments within every time-step. The model constructed in the above way is named Runge-Kutta Convolutional Neural Network (RKNet). According to this idea, Dense Convolutional Networks (DenseNets) were varied to RKNets. To prove the feasibility of RKNets, these variants were verified on benchmark datasets, CIFAR and ImageNet. The experimental results show that the RKNets transformed from DenseNets gained similar or even higher parameter efficiency. The success of the experiments denotes that RungeKutta methods can be utilized to construct convolutional neural networks for image classification efficiently. Furthermore, the network models might be structured more rationally in the future basing on RKNet and priori knowledge.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Runge-Kutta neural network for identification of dynamical systems in high accuracy

This paper proposes Runge-Kutta neural networks (RKNNs) for identification of unknown dynamical systems described by ordinary differential equations (i.e., ordinary differential equation or ODE systems) with high accuracy. These networks are constructed according to the Runge-Kutta approximation method. The main attraction of the RKNNs is that they precisely estimate the changing rates of syste...

متن کامل

A Comparative Study of Neural Network Structures in Identification of Non-linear Systems

Abstract – This paper investigates the identification of nonlinear systems by neural networks. As the identification methods, Feedforward Neural Networks (FNN), Radial Basis Function Neural Networks (RBFNN), Runge-Kutta Neural Networks (RKNN) and Adaptive Neuro Fuzzy Inference Systems (ANFIS) based identification mechanisms are studied and their performances are comparatively evaluated on a thr...

متن کامل

A comparative study of soft-computing methodologies in identification of robotic manipulators

This paper investigates the identification of nonlinear systems by utilizing soft-computing approaches. As the identification methods, Feedforward Neural Network architecture (FNN), Radial Basis Function Neural Networks (RBFNN), Runge-Kutta Neural Networks (RKNN) and Adaptive Neuro Fuzzy Inference Systems (ANFIS) based identification mechanisms are studied and their performances are comparative...

متن کامل

Estimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks

Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...

متن کامل

Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study

Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.08831  شماره 

صفحات  -

تاریخ انتشار 2018